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ABSTRACT 

In allosteric regulation, protein activity is altered when ligand binding causes changes in 

the protein conformational distribution. Little is known about which aspects of protein 

design lead to effective allosteric regulation, however. To increase understanding of the 

relation between protein structure and allosteric effects, we have developed theoretical 

tools to quantify the influence of protein/ligand interactions on probability distributions 

of reaction rates and protein conformations. We define the rate divergence, kD , and the 

allosteric potential, xD , as the Kullback-Leibler divergence between either the reaction-

rate distributions or protein conformational distributions with and without ligand bound. 

We then define  as the change in the conformational distribution of the combined 

protein/ligand system, derive  in the harmonic approximation, and identify 

contributions from three separate terms: one term, , results from changes in the 

eigenvalue spectrum; a second term, , results from changes in the mean 

conformation; and a third term, , corresponds to changes in the eigenvectors. Using 

normal modes analysis, we have calculated these terms for a natural interaction between 

lysozyme and the ligand tri-N-acetyl-D-glucosamine, and compared them with 

calculations for a large number of simulated random interactions. The comparison shows 

that interactions in the known binding-site are associated with large values of . The 

results motivate using allosteric potential calculations to predict functional binding-sites 

on proteins, and suggest the possibility that, in Nature, effective ligand interactions occur 
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at intrinsic control points at which binding induces a relatively large change in the protein 

conformational distribution. 

INTRODUCTION 

Modern understanding of allosteric mechanisms in proteins began with the symmetry 

model,1 which sought to explain the Hill-equation binding of oxygen to hemoglobin2 in 

terms of a structural difference between apo- and oxygenated hemoglobin.3,4 Other 

models of allostery, beginning with the sequential model,5 have led to modification and 

refinement of the original concepts, and today mechanisms of allosteric regulation are 

known in much more detail.6,7 However, the central idea explaining allosteric 

mechanisms still holds: allosteric interactions cause conformational changes that lead to 

altered protein activity. 

 

The importance of considering continuous conformational distributions in understanding 

allosteric effects was recognized by Weber.8 Neutron scattering experiments later 

provided evidence for changes in protein dynamics upon ligand binding,9,10 and it was 

subsequently realized that ligand binding at an allosteric site can influence binding at a 

remote site without inducing a mean conformational change, solely through alteration of 

atomic fluctuations.11 Since then the role of protein dynamics in allosteric regulation has 

been the subject of numerous studies, mostly concerned with the effects of allosteric 

interactions on free energies.12,13  
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The importance of examining changes in the conformational distribution to understand 

allosteric effects in proteins has recently been emphasized.14 The quantitative treatment 

of changes in the conformational distribution, however, demands advances in the theory 

of allostery. Therefore, in the spirit of progress in rate theories,15 here we consider the 

effects of protein/ligand interactions on probability distributions of reaction rates and 

protein conformations. We define the rate divergence and allosteric potential as the 

Kullback-Leibler divergence16 between reaction-rate distributions or conformational 

distributions before and after ligand binding. We then define  as the change in the 

conformational distribution of the combined protein/ligand system, and derive  in the 

harmonic approximation, resulting in three separate terms for contributions from changes 

in the eigenvalue spectrum ( ), the mean conformation ( ), and the eigenvectors 

( ). We describe normal modes analysis of an X-ray structure of lysozyme with and 

without ligand, and use the results of the simulation to calculate  for ligand binding to 

lysozyme in the harmonic approximation. Finally, we compare calculations of  for a 

large number of random protein/ligand binding configurations, and find that interactions 

in the natural binding site have a relatively high value of . The results motivate using 

calculations of to predict functional binding sites on proteins, and suggest that 

functional sites might correspond to control points at which binding causes a relatively 

large change to the protein conformational distribution.  
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MATERIALS AND METHODS 

Normal Modes Analysis 

An atomic model of lysozyme was taken from a 1.77 Å X-ray structure of turkey egg-

white lysozyme in complex with tri-NAG (Protein Data Bank (PDB) entry 1JEF17) (Fig. 

1). Water molecules were removed and hydrogen atoms were added to the protein using 

the HBUILD module of CHARMM18. The extended-atom model TOPH19 and the polar 

hydrogen parameter set for proteins, PARAM19, were used for the energy minimization 

and normal modes analysis. 

 

To calculate the normal modes of apo-lysozyme, the tri-NAG atoms were removed and 

the energy was minimized in vacuo using the Adopted Basis Newton-Raphson (ABNR) 

minimization algorithm19 with a distance-dependent dielectric constant of 4 times the 

distance ( r4=ε ), and a final root-mean-square (RMS) energy gradient of 10-7 

kcal/mol Å. This RMS gradient has been shown to be satisfactory for calculating normal 

modes and is expected to yield only real-frequency modes.20 As in a previous normal 

modes study of lysozyme,21 the cutoff distance for the non-bonded neighbor list update 

was 8 Å, and a switching function with an “on” distance of 6.5 Å and an “off” distance of 

7.5 Å was used for energy evaluations. The neighbor list was updated every 10 

minimization steps.  
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To facilitate analysis of the lysozyme complex, we used a system composed of the 

protein and the NAG monomer (residue 132) which is most deeply bound in the 

lysozyme cleft (Fig. 1), removing the two other NAGs. The extended-atom representation 

of the NAG molecule and the corresponding energy parameters were taken from a 

published normal-modes study of lysozyme.21 As was done in that study, we began the 

energy minimization with a refinement of the coordinates of the ligand (NAG) in the 

presence of the protein. Steepest descent minimization was performed for a maximum of 

2000 steps or until the RMS energy gradient fell below 1×10-7 kcal /mol Å, using 

harmonic constraints on all atoms. Very large harmonic constraints, kc=1×107 kcal /(atom 

mass) mol Å2, were placed on the protein atoms, and smaller constraints, kc=10.0 kcal 

/(atom mass) mol Å2, were placed on the ligand atoms. This initial minimization 

improved the ligand coordinates without significantly changing the refined X-ray 

coordinates of the protein.  The entire system was then minimized as for the apo-

lysozyme minimization. 

 

To calculate the normal modes of a model, the force constant matrix was calculated using 

the VIBRAN module of CHARMM, and was diagonalized using the DIAG module. 

Potentials were evaluated in vacuo with r4=ε , using the same cutoff conditions on the 

non-bonded energy terms as were used in minimization. We ensured that there were no 

modes with negative eigenvalues, and six modes with near-zero frequency (smaller than 

0.003 cm-1), corresponding to rigid-body motions of the protein.  
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To derive  in the harmonic approximation, the apo-protein model is assumed to 

include a non-interacting ligand (see below). Normal modes analysis of such a model 

yields eigenvectors 

xD

( )LP , iii vvv =  with both protein elements  and ligand elements . 

Because there is no interaction between the protein and ligand, each mode is either a 

protein mode, with non-zero elements in  and zero-valued elements in , or a ligand 

mode, with zero-valued elements in  and non-zero elements in . The apo-protein 

eigenvectors v
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i have the same dimensionality as those of the protein/ligand complex ( iv′ ), 

enabling the equation for  to be derived. To concentrate on changes in the protein and 

not in the ligand, however, we did not include a non-interacting ligand in the CHARMM 

simulations of apo-lysozyme. In eliminating the ligand from the apo-lysozyme model, we 

obtained only the protein modes and protein elements  of each eigenvector. The ligand 

modes and ligand elements  of the non-interacting NAG were not needed in the 

calculations below.  
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Generation of Structures with Random Protein/Ligand Interactions 

New complexes with NAG located at random surface points were generated with the aid 

of the program MSMS.22 Surface points were created by running MSMS on apo-

lysozyme with a probe radius of 1.4 Å (Fig. 1). A total of 111 points were randomly 

selected to generate structures with arbitrary protein/ligand interactions. Ten additional 

points were manually selected to examine complexes in which NAG is shifted just 0.1 Å-

2.0 Å from the natural binding site. For a given surface point, the NAG molecule was 
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moved from its correct binding position to a new position by translation of its center of 

mass to the surface point. To avoid clashes between the ligand and the protein, the NAG 

molecule was then moved outwards 4.0 Å along the surface normal as calculated by 

MSMS (the NAG molecule has the approximate shape of a plane with dimensions 4.8 Å 

× 8.6 Å). Energy minimization and normal modes analysis were carried out following 

exactly the same procedure as for the NAG-lysozyme complex with correct binding 

position. The closest distance between heavy atoms in the ligand and protein varied from 

2.7 Å to 3.0 Å, which is consistent with the distance of a hydrogen bond. 

RESULTS 

Theory 

Definition of allosteric potential and rate divergence 

Consider a protein that performs a function such as catalysis. The protein function is 

regulated by binding of a ligand at either the active site or an allosteric site. Let P(k) and 

P(x) be the equilibrium probability distribution of reaction rates k and configurations x of 

the apo-protein, and P′(k) and P′ (x) be the same probability distributions when ligand is 

bound. We propose that a reasonable measure of the magnitude of an allosteric effect is 

the Kullback-Leibler divergence16 kD  of the reaction rate probability distributions before 

and after ligand binding, calculated as 
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( )
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log ,  (1)

 

which is always non-negative (see APPENDIX A). Because the relation between a 

protein’s configuration and its reaction rate is complex, and because of limitations in the 

detailed knowledge of protein chemistry, there is currently no general method for 

theoretical calculation of P(k) for proteins. We are therefore motivated to obtain an upper 

bound on kD  using the conformational distribution P(x). Assuming the rate k(x) is a 

function of the configuration x, the relation between P(k) and the conformational 

distribution P(x) is 

 

( ) ( ) ( )( )kkPdkP N −= ∫ xxx δ3 , (2)

 

where the integral is over all conformations x. 

 

The Kullback-Leibler divergence xD  between the conformational probability distributions 

is 
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where the integral is over all conformations x. 

 

Assume k(x) remains the same with and without ligand. Although k(x) may exhibit a 

complex dependence on the conformation, if k(x) is invertible, kD  = xD . If instead the 

rate k is the same for all conformations, then kD  = 0. By general consideration of the 

assumptions that each rate k may correspond to more than one conformation x, that each 

conformation x corresponds to only a single rate k, and that k(x) is the same with and 

without ligand, Equations (1) – (3) lead to the relation (see APPENDIX A):  

 

kDD ≥x . (4)

 

Assuming Boltzmann distributions for P(x) and P′(x), Equation (3) shows that xD  is 

essentially the negative mean relative energy of ligand-bound protein conformations, 

where each energy is measured relative to the energy of the equivalent apo-protein 

conformation. Because xD  is associated with a mean energy, and because Equation (4) 

shows that xD  is the highest possible value of kD , we call xD  the allosteric potential. 

Harmonic approximation 

Here we obtain a simple expression for a quantity closely related to xD  in the harmonic 

approximation of protein dynamics (see APPENDIX A for details not provided here). Let 

the protein/ligand conformation be x = (xP, xL), consisting of 3N atomic coordinates for N 

atoms. The protein coordinates are represented by xP, and the ligand coordinates by xL. 
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To obtain a simple expression, instead of considering P(xP) and calculating the allosteric 

potential xD , we use the full protein/ligand conformational distribution P(x) to calculate 

a related quantity that we denote as . We define the apo-protein system as a system in 

which there is no interaction between the protein and the ligand. The conformation may 

be described as a superposition of normal modes of either the apo-protein or the 

protein/ligand system: 

xD

( ) ( )∑∑
==

′′+′=+=
N

i
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N

i
ii aa

3

1
0

3

1
0 vxxvxxx . (5)

 

x0 is the equilibrium conformation, ai are the coefficients of the expansion (with units of 

length L), and ( )LP , iii vvv =  are the eigenvectors of the Hessian matrix H(x) of the 

potential energy function U(x) evaluated at x0:
00

2

xx jiij xxUH ∂∂∂= . The protein 

elements of the eigenvectors are represented by , and the ligand elements by .  

Unprimed quantities refer to the apo-protein system, and primed quantities refer to the 

protein/ligand system. The expression for the potential energy of a conformation x is 

P
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( ) ( )∑
=

=
N
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3

1

22

2
1 xx ω  (6)

 

where  are the eigenvalues of the Hessian matrix and have units MT2
iω

-2, with M being 

mass and T being time. We assume a Boltzmann distribution of conformations, ignore the 

solvent, and ignore changes in volume. 
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Using Eq. (3), the expression for  is xD
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Where , the integral is over the range [-∞,∞] in each coefficient a000 xxx −′=∆ i, and the 

partition function Z is given by 
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with an equivalent expression for Z′. Equation (7) evaluates to 
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which can be calculated exactly given the normal modes of the apo-protein and 

protein/ligand systems. For convenience, indices i and j have been exchanged in the 

double-summation term. Each mode i contributes an independent term Dxi to the total Dx. 

Each Dxi is in turn the sum of three kinds of term: the leftmost term ( )iiiD ωωω ′= logx  is 

the contribution from the difference in the eigenvalue spectrum; the middle 

term TkD Biii 22
0

2 vxx
x ⋅∆=∆ ω  is the contribution from the difference in the mean 
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conformation; the remaining terms, ( )∑ −⋅′′=
j jiijiD 212

222 vvv
x ωω , make up the 

contribution from the difference in the eigenvectors. We also define the 

sums ; ; and ∑= i iDD ωω
xx ∑ ∆∆ =

i iDD x
x

x
x ∑= i iDD v

x
v
x . 

 

The normal modes may also be defined in terms of mass-weighted coordinates 

xMx 21→ , where , m( NNN mmmmmm ,,,...,,,diag 111=M ) k being the mass of atom k, as is 

done in CHARMM’s VIBRAN module18. In this case,  is still given by Eq. (9), but 

the coefficients a

xD

i have units M1/2L, and the eigenvalues  are squared frequencies with 

units T

2
iω

-2. The frequency values iω  may also be divided by the speed of light to yield 

units L-1, as is done in CHARMM, and as is the convention used to report results below. 

 

Analysis of a Natural Lysozyme/Ligand Interaction 

Lysozyme is a protein that has been well-studied by normal modes simulations;21,23,24 its 

thermal vibrations have been studied experimentally using inelastic neutron scattering.10 

Because the active site is located in a cleft between two large lobes of the protein, we 

expect ligand binding at the active site to significantly change the conformational 

distribution of lysozyme. To quantify this effect, as an application of our theory, we have 

calculated the normal modes of an X-ray crystallography model of lysozyme both with 

and without its interaction with tri-N-acetyl-D-glucosamine (tri-NAG), and have 

estimated Dx in the harmonic approximation. 
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Normal modes 

For the apo-protein, the root-mean-square deviation (RMSD) of atomic positions before 

and after energy minimization was 1.36 Å for all atoms, and 1.01 Å for backbone atoms. 

For the lysozyme/NAG complex, the RMSD of all protein atoms was 1.30 Å, 1.03 Å for 

the backbone atoms, and 0.43 Å for the NAG molecule. The RMSD between the 

minimized apo-protein and the minimized complex was 0.51 Å for the backbone atoms. 

 

Frequency spectra for the apo-protein and the lysozyme/NAG complex are shown in Fig. 

2. In each case, there are about 250 modes with frequencies below 50 cm-1; such low-

frequency modes are known to describe most of the displacements of the backbone 

atoms, which are most important for describing large-scale conformational changes.25 

The calculated spectra are very similar, and have the same overall frequency-dependence: 

in the low frequency region (< 250 cm-1), a maximum density of 7 cm appears near the 

frequency 50 cm-1, after which the density of the modes drops very sharply until the 

frequency 120 cm-1; it then tapers from 3cm at 120 cm-1 to 2cm at 500 cm-1 with a 

standard deviation of about 1 cm. 

 

We found significant changes in the low-frequency eigenvectors between the apo-protein 

and the complex. The very lowest-frequency mode (mode 7, 3.39 cm-1) of the apo-protein 

corresponds to a torsion between the two major lobes of the protein, which bracket the 

binding cleft. The dot-product squared of the protein-element component of the 

eigenvector of this mode with that of mode 7 of natural lysozyme/NAG complex 
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2P
7

P
7 vv ′⋅  has a value of just 0.01. We could not locate a clear analogue of mode 7 of the 

apo-protein among the modes in the complex, but the first 10 modes of the complex 

account for much of this mode ( 85.0
16,7

2PP
7 =′⋅∑ =i ivv ). The second-lowest-frequency 

mode (mode 8, 3.45 cm-1) of the apo-protein, which is a bending mode and corresponds 

to an opening and closing of the cleft, appears to correspond to the very lowest-frequency 

mode (mode 7, 3.13 cm-1) of the natural lysozyme/NAG complex, but 
2P

7
P
8 vv ′⋅  is only 

0.56. By inspection of visualized motions, the difference appears to come from an 

approximately 30º rotation of the bending plane of mode 7 in the complex with respect to 

the plane of mode 8 in the apo-protein.  

Estimation of Dx

Differences in the eigenvalue spectrum, mean conformation and eigenvectors were 

quantified using the three contributions to Dx in the harmonic approximation: ,  

and . To concentrate on changes in the protein, we only used the protein elements of 

the eigenvectors in calculation of Eq. (9), and to focus on the influence of large-scale 

conformational changes, we only used low-frequency modes to calculate , , and 
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The value of was calculated to be -5.75 using the first 250 modes. The dependence of 

 on i exhibits high variation at low frequencies, with the amplitude decreasing as the 
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mode index increases (Fig. 3). At higher frequencies, the value of  exhibits variations 

about a mean of approximately -0.05.  

ω
iDx

 

For calculation of , we first made a mass-weighted least-squares superposition of the 

apo-protein coordinates and the coordinates from the protein/ligand complex using the 

McLachlan algorithm,

x
x
∆D

26 in an effort to minimize the contribution due to rigid-body 

protein displacements. Each term  involves a factor that is the squared inner product x
x
∆
iD

2
0 ivx ⋅∆ between the mean coordinate change upon ligand binding and an eigenvector of 

the apo-protein. This factor corresponds to the fraction of the total mean squared 

displacement (MSD) 2
0x∆  that is accounted for by a displacement along eigenvector vi 

in configuration space. To determine how well the low-frequency normal modes can 

express the conformational change upon ligand binding, we calculated 
2P

0 ivx ⋅∆  for 

each eigenvector using just the subspace of the protein Cα coordinates (Fig. 4). We found 

that 80% of the total Cα MSD was explained by a sum of the contributions from the 100 

lowest-frequency eigenvectors (Fig. 4). The value of  was calculated to be 0.324 

using these 100 eigenvectors, assuming a temperature of 300 K. 

x
x
∆D

 

A value for  was calculated using the first 250 modes of the complex, and the first 300 

modes of the apo-protein. We used more modes for the apo-protein than for the complex 

because we expect each eigenvector of the complex to be mostly accounted for by a 

v
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linear combination of apo-protein eigenvectors that have neighboring frequencies, 

including higher frequencies. The value obtained was 33.0. The distribution of  versus 

mode index i (Fig. 5) indicates that the main contribution to  comes from the low-

frequency modes. 

v
xiD

v
xD

Analysis of Random Lysozyme/Ligand Interactions 

To investigate the possibility of using the allosteric potential to predict ligand-binding 

sites, the three terms of the harmonic approximation of Dx were estimated for a large 

number of lysozyme complexes with random ligand interactions (see MATERIALS AND 

METHODS). We also examined the effect of different ligand interactions on plots of the 

frequency spectrum and on the magnitude of the conformational change as measured by 

the RMSD of atomic positions.  

 

The frequency distributions of new complexes were very similar to that of the apo-

protein (Fig. 2). Most of the complexes have their lowest frequency in the range 2.0 cm-1 

to 3.5 cm-1, and 40 percent of them have a higher lowest-frequency than that of natural 

lysozyme/NAG complex (Fig. 6). About 55 percent of the points in Fig. 1 have a higher 

 than that of the natural binding site (Fig. 7). The results indicate that  for the X-

ray structure with correct binding site lies in the middle of those for complexes whose 

binding sites are at random positions on the protein surface. 

ω
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Minimization of the structures resulted in RMSDs of backbone atoms with respect to the 

X-ray structure in the range 0.75 Å to 1.25 Å (Fig. 8). We found that 50% of the 

complexes have larger RMSDs than that of the natural lysozyme/NAG complex. Eighty 

percent of the complexes have RMSD values within 0.1 Å of that of the natural 

lysozyme/NAG complex. When the RMSD is calculated instead with respect to the 

structure of the fully minimized apo-protein, 60% of the complexes were found to have a 

larger backbone RMSD than that of the natural lysozyme/NAG complex (Fig. 9).  

 

Values of the mean-conformation contribution, , for the complexes span from almost 

0 to 0.6 (Fig. 10). As was done for the natural complex, only the 100 lowest-frequency 

modes were used to calculate  for new complexes (the contribution of individual 

modes to the total RMSD for new complexes was similar to the case illustrated in Fig. 4). 

About 55% of the binding sites generate a higher  than that of the natural binding site 

and about 60% of all points are concentrated in the range 0.25 to 0.4. Even for the 10 

complexes with NAG located in the neighborhood of the natural binding site,  can 

vary from 0.25 to 0.4.  
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Results of calculations of the contribution to Dx from the eigenvectors, , are shown in 

Fig. 11. Values were calculated as for the natural protein/ligand complex, and are in the 

range -5 to 55. Just ten (less-than 10%) of the test points resulted in a higher value of  

than that of the natural protein/ligand complex. Near the natural binding site, 7 of 10 

v
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manually placed points were found to have high  values. One of these is the highest-

value point, located about 1.3 Å from the natural binding position. 

v
xD

 

Of the 10 automatically generated points with high values of , four are near residues 

that are important for substrate interactions and catalysis (Fig. 12). The two green points 

in the cleft are near residues 35, 52, 56-58, and 107-109. Of these residues, Glu35 and 

Asp52 are the catalytic residues of the Phillips mechanism,

v
xD

27 and Gln57, Ala107 and 

Trp108 are involved in interactions with the substrate.28 The orange point also lies within 

the cleft, contacting residues 62, 98, and 107; in addition to Ala107, Trp62 is involved in 

ligand interactions.28 The magenta point is near Arg114, which is involved in ligand 

interactions.28 Of the other six points, the two cyan points are near residues 79-85, which 

overlap the EF-hand calcium-binding motif in a structure of the homologous baboon α-

lactalbumin (PDB code 1ALC29); calcium also binds to this motif in some lysozymes. 

The four red points are located away from known functional sites: one point is near the 

N-terminus (residues 1-4); another is near residue 13, at the end of the N-terminal helix, 

and residue 18, at a turn after the N-terminal helix; the final two are near residues 16 and 

96. Because terminal residues tend to exhibit large fluctuations, the interactions near the 

N-terminus might be expected to cause large changes in the conformational distribution. 

It would be interesting to learn whether lysozyme residues 13, 16, 18, and 96 are located 

at functionally important sites. 
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CONCLUSIONS 

In the traditional view of allosteric mechanisms, ligand binding at a regulatory site 

induces a change in the mean protein conformation. In the perspective supported here, 

ligand binding at a regulatory site induces a change in the entire conformational 

distribution P(x) of a protein. We have proposed the allosteric potential xD  as a measure 

of the change in P(x) upon ligand binding, and developed Dx as a measure of the change 

in the combined protein/ligand conformational distribution. It will be interesting to 

further develop methods for calculating the allosteric potential, not only because it 

measures the global change in P(x), but also because it serves as an upper limit on the 

change in P(x) local to an active site, and thus provides a quantitative limit of an 

allosteric effect on an active site. To address specific allosteric mechanisms, it will be 

interesting to calculate local allosteric potentials, such as the change in the 

conformational distribution of an active site upon ligand binding to a regulatory site. 

 

Calculation of Dx in the harmonic approximation yields some general insights into the 

nature of allosteric effects in proteins. The harmonic approximation yields three terms 

that contribute to the total Dx (Eq. (9)): one term, , corresponds to changes in the 

frequency spectrum; a second term, , corresponds to changes in the mean 

conformation; and a third term, , corresponds to changes in the eigenvectors. Through 

this separation of terms, it is apparent that there need not be any difference at all in the 

mean conformation upon ligand binding to result in a large value of D

ω
xD

x
x
∆D

v
xD

x, supporting the 
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possibility of allostery without conformational change.11 In the analysis of different 

lysozyme/NAG interactions, the values of  were usually small compared to those of 

either  or , indicating that, compared to changes in the eigenvalues or eigenvectors, 

changes in the mean conformation contributed relatively little to the value of D

x
x
∆D

ω
xD v

xD

x, and 

therefore had a relatively small effect on the conformational distribution. The value of Dx 

may be large even if there is no change in the eigenvalues, indicative of the fact that it is 

sensitive to the detailed changes in the conformational distribution that are captured by 

the eigenvectors. 

 

Although changes in the eigenvectors upon ligand binding are measured by the term , 

analysis of allosteric effects using  differs from a simple comparison of eigenvectors 

before and after ligand binding. An important difference is that a large change in the 

eigenvectors of a system does not in itself imply a large change in the conformational 

distribution, whereas a large change in  does. For example, consider a system in 

which two modes A and B are degenerate, i.e., the eigenvalues of the modes are the 

same. Given a solution with eigenvectors v

v
xD

v
xD

v
xD

A and vB, any two eigenvectors that are 

orthonormal, linear combinations of vA and vB yield a physically equivalent solution. By 

only comparing the eigenvectors, one might incorrectly conclude that alternative 

solutions are different. Calculation of  involves both the eigenvalues and the 

eigenvectors, however, and for this case yields a value of zero, indicating that the 

solutions are physically equivalent (see APPENDIX A).  Our theoretical framework 

v
xD
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provides a principled way to consider the eigenvalues when comparing eigenvectors, 

enhancing normal modes analysis. 

 

Looking beyond estimation of the allosteric potential using the harmonic approximation, 

methods to estimate free-energy distributions using molecular dynamics simulations30 

will allow estimation of the allosteric potential using more reasonable molecular-

mechanics Hamiltonians. Such simulations will enable a more realistic sampling of the 

energy landscape, and will enable the effects of the solvent and volume changes to be 

modeled. In addition, experimental characterization of the conformational distribution is 

currently possible using inelastic neutron scattering experiments,9,10 which can provide 

measurements of the frequency spectrum, or diffuse X-ray scattering, which may be 

compared with models of the conformational distribution.31-35 Such experiments might 

allow experimental estimation of the allosteric potential. Measurement of the rate 

divergence Dk requires measurement of the density of states g(k), which has already been 

experimentally demonstrated for carbon monoxide binding to myoglobin.36 Theoretical 

calculation of the rate divergence will rely on development of methods to calculate 

protein activity given a protein structure, which is a major goal of theoretical molecular 

biology. 

 

In examining a large number of complexes with NAG at different binding positions, we 

found that most positions yielding a large value of  are associated with functional sites 

of lysozyme. These results suggest that calculating  for many simulated interactions 

v
xD

v
xD
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between proteins and ligands might help to predict functionally important binding sites 

on proteins. As was seen with lysozyme, such sites might be either active sites or 

regulatory sites. (Just as binding at a regulatory site may change protein activity, ligand 

binding to the active site might change protein activity, e.g., by altering the configuration 

of key catalytic residues.) Because factors other than the change in the protein 

conformational distribution might be important to the effect of any given protein/ligand 

interaction, we do not expect the predictions of functional binding sites to be perfectly 

accurate. Nevertheless, it would be interesting to test this idea through prediction of 

ligand-binding sites using a database of known protein/ligand structures. Methods that 

make use of simplified models of protein dynamics will be useful for this task.37 

  

The development of the present theoretical tools for quantifying allosteric effects 

advances a theory of allosteric regulation which explicitly considers changes in the 

protein conformational distribution. The first application of these tools has suggested the 

possibility that, in Nature, effective ligand interactions are selected in a way that causes a 

relatively large change in the conformational distribution. Speculating about what might 

give rise to such a design principle, it is plausible that natural selection might favor 

biological systems in which protein activity is controllable by molecular signals. Such 

control can be facilitated by ligand interactions that cause large changes in the 

conformational distribution. Weber once offered a well-known description of a protein as 

a “kicking and screaming stochastic molecule.”38 Perhaps Nature favors ligand 

interactions that greatly perturb the stochastic dance of proteins. 
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APPENDIX A 

The Kullback-Leibler divergence is non-negative 

Non-negativity of the Kullback-Leibler divergence follows from the inequality 

: 1log −≤ xx

( )
( ) ( ) ( )

( ) ( ) 001log ≥⇒=′⎟⎟
⎠

⎞
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⎝
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⎛
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=− ∫∫ KLKL DxP
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xPdxxP

xP
xPdxD  (A1)

The allosteric potential is an upper bound for the rate divergence 

Consider the allosteric potential as a discrete sum: 

∑ ′⎟⎟
⎠

⎞
⎜⎜
⎝
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x
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x

x
x P
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Now consider calculation of kD  when k(x) is invertible except for just two 

conformations, named a and b, which yield the same rate. By induction, if xD  ≥ kD  for 

this case, then it is also true for higher degeneracies. All of the terms in the sum are 

unchanged save those for the two conformations, which are combined into one term in  

kD : 

( )ba
ba

ba PP
PP
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The equivalent contribution in xD  is 

b
b

b
a

a

a
x P

P
PP

P
Pd ′⎟⎟

⎠

⎞
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⎝
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We now show that dx ≥ dk, beginning with an expression for dx – dk: 

( ) ( ) ( )zP
z
zz

z
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where ab PPz = and ab PPz ′′=′ . 

Differentiation of ( )zz′δ  yields an extremum at zz ′= , where ( ) 0=′ zzδ : 

( ) zz
z
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z
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1
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The second derivative at zz ′=  is positive:  

( ) 0
1

11
2

2

>
′+

−
′

=′=′ zz
z

dz
d

zzzδ . (A7)

 

The factor  therefore has a minimum value of zero and is always positive. Because  ( )zz′δ

aP′  is positive, Eq. (A5) then implies dx ≥ dk , and therefore xD  ≥ kD . By induction, and 

by extension to the integral formulas, xD  ≥ kD  if k = k(x). 
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Dx in the harmonic approximation 

Here we give details of the calculation of Dx in the harmonic approximation. Assume a 

Boltzmann distribution of conformations, using the potential energy of Eq. (6): 

( )
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− ==
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Eq. (3) then becomes 
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By Eq. (5) we obtain the relation 

∑
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which we derive using the orthonormality of the vj’s. From Eq. (A10) we obtain 
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leading to Eq. (7) in the text. Evaluation of the integrals resulting from the expansion of 

Eq. (7) are performed as follows. The first integral is trivial: 
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Next, the integral 
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is a sum of Gaussian integrals of the type 
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The remaining integrals involve the squared term 
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The integral over the first term of Eq. (A15) yields 2
0 ivx ⋅∆ . When the second term of 

Eq. (A15) is expanded, the integrals over the cross terms vanish because they are odd 

functions of . Other terms of this expansion involve integrals of the type ja′
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The integral over the third term in Eq. (A15) vanishes because it is a sum of odd 

functions in . Substituting these expressions for the integrals in the expansion of Eq. (7) 

yields Eq. (9) in the manuscript. 

ja′

Comparison of equivalent normal modes solutions 

We expect the value of  (and ) to be zero for equivalent systems with different 

eigenvectors, as we illustrate here for a special case. Consider a harmonic system in 

v
xD xD
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which two modes A and B are degenerate, i.e., they both have the same eigenvalue ω2. 

For any normal modes solution with eigenvectors vA and vB, there exists a family of 

equivalent solutions with eigenvectors Av′  and Bv′  defined as follows: 

BBBABAB

BABAAAA

vvv
vvv

aa
aa

+=′
+=′

, (A17)

where 
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Although the eigenvectors of these solutions may be significantly different, because  

and  both equal ω
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and similarly for . Because all modes except A and B are identical, all other terms of 

 are also zero, and the value of  is therefore zero, as expected. Because the 

eigenvalues and mean conformations are also equivalent, by Eq. (9), the value of is 

also zero. 
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FIGURES 

 

Figure 1: Illustration of the lysozyme/tri-NAG complex (PDB code 1JEF). 

Lysozyme is depicted as a yellow backbone ribbon, and the tri-NAG is depicted 

using a purple wire-frame; the center of the deepest-buried NAG monomer is 

indicated by a purple sphere. The protein is decorated with gray spheres located 

at 111 automatically generated surface points at which NAG was placed for 

calculation of the allosteric potential for random ligand interactions. The figure 

was created using RASMOL.39 
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Figure 2:  The frequency spectra of apo-lysozyme, the natural lysozyme/NAG 

complex, and some complexes with arbitrary lysozyme/NAG interactions. Values 

are densities determined by counting the number of frequencies in a window of 5 

cm-1 width, centered on the frequency value of the x-axis, and normalizing by the 

width (division by 5 cm-1). 
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Figure 3. The single-mode contribution to the frequency-spectrum component of 

the allosteric potential, , vs. mode index i for the natural lysozyme/NAG 

complex.  
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Figure 4. Contributions to the mean-squared displacement (MSD) of Cα atoms 

between the apo-protein and the natural lysozyme/NAG complex for the 250 

lowest-frequency eigenvectors of the apo-protein. Each contribution is calculated 

as 
2)()(

0

αα
i

vx ⋅∆ , where is the displacement of the Cα atoms, and is the 

Cα subspace of eigenvector i. The total MSD is equal to 

)(
0

αx∆ )(α
i

v

2)(
0

αx∆ . The inset shows 

the cumulative sum of the contributions. Most of the displacement is accounted 

for by space of the first 50 eigenvectors, and the cumulative contribution after 

mode 100 (about 3700 modes) is less than 20%. Results are similar for 

complexes with random ligand interactions. Only the first 100 modes were used 

to calculate  for each complex. x
x
∆D
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Figure 5: The single-mode contribution to the eigenvector contribution, , vs. 

mode index i for the natural lysozyme/NAG complex. 
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Figure 6. Distribution of the frequency of very lowest-frequency mode (mode 7) of 

apo-form lysozyme, the natural lysozyme/NAG complex, and complexes with 

random binding-sites. The box point represents the apo-protein (3.39 cm-1), the 

star point represents the natural lysozyme/NAG complex (3.13 cm-1), and the 

dots represent complexes with random NAG binding sites. 
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Figure 7: Values of the frequency contribution, , vs. the distance to the natural 

binding site. The star represents the natural lysozyme/NAG complex, and the 

dots represent complexes with random NAG binding sites. 
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Figure 8. Protein backbone RMSDs between structures before and after 

minimization. The box point represents the apo-protein (1.01Å), the star 

represents the natural lysozyme/NAG complex (1.03 Å), and the dots represent 

complexes with random NAG binding sites. 
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Figure 9. Protein backbone RMSDs for the minimized natural lysozyme/NAG 

complex and complexes with random binding sites, using the apo-protein as a 

reference. The star represents the natural lysozyme/NAG complex (0.51 Å), and 

the dots represent complexes with random NAG binding sites. 
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Figure 10: Values of the mean conformation contribution, , vs. the distance to 

the natural binding site. The star represents the natural lysozyme/NAG complex, 

and dots represent complexes with random NAG binding sites. 
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Figure 11: The distribution of the eigenvector contribution, , vs. the distance 

between the test point and the natural binding site. The star indicates the natural 

lysozyme/NAG complex. Colored points have values at least as large as that of 

the natural lysozyme/NAG complex. Blue points (7 in total) are in the immediate 

neighborhood of the natural ligand-binding site – all of the blue points were 

manually selected. Locations of all other points were generated automatically as 

described in the text. 
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Figure 12. Visualization of sites near automatically generated test points that 

have a relatively large value of . The image at the right is rotated 180º about 

the y-axis with respect to the image at the left. The deepest-buried NAG 

monomer is depicted using a purple wire-frame. Automatically generated test 

points from Fig. 11 are indicated as colored spheres. Residues in PDB entry 

1JEF for which the Cα atom is within 6 Å of an automatically generated test point 

are painted using the color of the test point: green (35, 52, 56-58, 107-109), 

orange (62, 98, 107), cyan (79-85), magenta (114), and red (1-4, 13, 16, 18, 96). 

Residue 107 is near both a green and orange point and is painted orange. 

Residues among these that are known to be important to the function of 

lysozyme (see text) are labeled and rendered using wire-frames. The figure was 

created using RASMOL.
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